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ABSTRACT 

This study comprehensively investigates the influence of time-periodic boundary temperature on the onset of 

convection in a Boussinesq-Stokes suspension, a fluid system characterized by unique viscosity and density 

properties. The research focuses on how both temporal and spatial variations affect the distribution of the basic state 

temperature within the suspension layer, which is heated from below and cooled from above. To analyze the stability 

and determine the eigenvalue associated with this phenomenon, a perturbation approach is employed, accounting for 

the magnitude of boundary temperature perturbations. This method allows for a detailed examination of the system’s 

response to modulated thermal conditions. A corrected Rayleigh number is derived to assess the stability of the 

system, particularly to evaluate the potential for sub-critical instability, where convection may occur at lower 

Rayleigh numbers than predicted by classical theory. The findings are compared with exact solutions to validate the 

results, providing insights into controlling convection through temperature modulation. The study highlights the 

impact of modulation frequency and amplitude on convection onset, offering valuable implications for fluid dynamics 

applications involving suspensions. 

Keywords: Rayleigh-Bénard Convection, Boussinesq-Stokes Suspension, Temperature Modulation, Critical Rayleigh 

Number, Thermal Stability. 

 

I. Introduction 

 

A simple temperature profile that depends on both place and time is necessary since one of the 

effective ways of preventing convection by maintaining a non-uniform temperature gradient originates from 

transient heating or cooling at the borders.  The stability of a horizontal layer of a viscous fluid heated from 

below was studied by Venezian (1969) under conditions of a constant temperature gradient between the layer's 

surfaces and a sinusoidal disturbance to the wall temperatures that varied with time.  Although time-periodic 

modulation of the wall temperatures stabilizes at low frequencies, it destabilizes the initiation of convection 

throughout a broad range of modulation frequencies, as shown later by Yih and Li (1972).  According to the 

research, changing the frequency of the enforced temperature modulation affects the critical Rayleigh number 

(which corresponds to the start of convection) in certain situations, and modifying this modulation may either 

speed up or slow down the start of instability.  Topics covered in Lage's (1993) research include oscillatory 

heating and the effects of vertical density gradients on convection that vary with time.  Numerous researchers 

have examined the stability of various fluid layers when exposed to heat modulation. (see Venezian 1969, Liu 

2004,  Siddheshwar and Pranesh 1999, 2000, Siddheshwar and Abraham 2003, Mahabaleswar 2007). 

 

 For fluid applications involving suspensions, the convection control issue is relevant and interesting.  

This is why we investigate the issue of controlling convection by temperature regulation.  In a Boussinesq-

Stokes suspension layer that is heated from below, we find the beginning of convection when the wall 

temperatures are subjected to a time-periodic disturbance in addition to a fixed temperature differential between 

them.  

  

II.   Mathematical Formulation and Solution 
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       Think of a Boussinesq-Stokes layer hot from below and cold from above, contained between two endless 

horizontal surfaces spaced 'd' apart (refer to Fig. 1).  In a Cartesian coordinate system, the z-axis extends 

vertically upward from its origin at the bottom border. 

Figure 1. Physical Configuration 

The surface temperatures are: 

( )  10 1 cos
20T T + ΔT t,t = +                     at    z = 0                                          (2.1)     

and  

( ) ( )1 1 cos
20T d,t = T ΔT t +− −                at       z = d.                                      (2.2) 

The governing equations are: 

Continuity Equation 

 

0q  = ,                                                                                                 (2.3)         

 

Conservation of Linear Momentum 

( ) 2 4
0

ˆ ,
q

q q p gk q q
t

   
 

 +  = − − +  −   
                                                   (2.4) 

Conservation of Energy 

2T
q T T

t



+  = 


,                                                                                    (2.5)                     

 

 

Equation of State 

( )0 01 T T   = − −  ,                                                                                     (2.6) 

 

III.   Basic State 

 

 This research aims to examine the stability of a quiescent state against tiny perturbations applied to the 

fundamental state.  The fundamental condition of the liquid in a quiescent state is characterized by 
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( ) ( ) ( )0, , , , , , .b b b bq T T z t p p z t z t = = = =                                                     (3.1) 

The temperature bT , pressure bp  and density b satisfy 

2

2
b bT T

t z


 
=

 
,                                                                                                            (3.2) 

b
b

p
g

z



− =


                                                                                                          (3.3) and        

( )01b o bT T   = − −  .                                                                                          (3.4) 

Solution to equation (3.2) that fulfills thermal boundary conditions (2.1) and (2.2) is 

( ) ( )0

2
1 Re

2

z z

i td d
b

T z
T T a e a e e

d

 
  

−
−

  
     = + − + + −  

      

.                        (3.5)  

Here Re {….} denotes the real part of {….} and  

( )
2

1
2

d
i





= − , ( )

2

iT e e
a

e e

 

 


− −

−

  − 
=  

−  

.                                                        (3.6) 

IV.   Linear Stability Theory 

 

Let the fundamental state be disrupted by an infinitesimal disruption.  The physical quantities may now 

be considered as  

( ) ( ) .+ z + , + =b b b bzq = q q , ρ= ρ ρ p = p p , T T +θ                                            (4.1) 

The prime denotes that the quantities are infinitesimal perturbations. 

 By substituting equation (4.1) into equations (2.3) through (2.6) and using the fundamental state 

solution, we get the linearized equations that regulate the infinitesimal perturbations in the following form. 

0q =  ,                                                                                       (4.2) 

2 4
0

ˆ 
 

   = − − −   
p k +

q
g q q ,

t
                                                       (4.3) 

2bT
W

t z


 


+ = 

 
,                                                                           (4.4) 

0    = − .                                                                                      (4.5) 

The perturbation equations (4.2)-(4.5) are non-dimensionalized using the following definition: 

( )
2

*, *, * , , , * , * , * .
x y z t W

x y z t W
d d d Td

d

 




 
= = = = 

 
                            (4.6) 

By applying the curl operator twice to equation (4.3) and using equation (4.5), followed by non-

dimensionalizing the resultant equation and equation (4.4) with the aid of equation (4.6), we get 

2 4 2 2
1

1
C W R

Pr t


 
−  +   =   

,                                                                      (4.7) 

2 0T
W

t z


 
−  = − 

  
 .                                                                          (4.8) 

In equation (4.8),
0T

z




 is the non-dimensional form of 

bT

z




 and is given by: 
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0 1
T

f
z




= − +


                                                                                                       (4.9) 

where 

and  

( )
2

ie e
A

e e

 

 




− −

−

 − 
=  

−  

.                                                                                       (4.10) 

Equations (4.7) - (4.8) are solved subject to the conditions  

2 4 0, 0,1W W W z=  =  = = =  .                                                                    (4.11) 

Eliminating    between from equations (4.7) - (4.8), we get an equation for W in the form 

2 2 2 4 20
1

1 T
C W R W

t Pr t z

    
−   −  +  = −         

.                                        (4.12) 

In order to enable analytical treatment, we just take into account free-free and isothermal 

circumstances.  By using the vertical component of velocity W alone to represent the boundary conditions 

(4.11), we may comply with Eq. (4.12).  When asterisks are removed, the boundary conditions are expressed as 

(Siddheshwar and Pranesh 2004): 

2 4 6

2 4 6
0 at 0, 1.

W W W
W z

z z z

  
= = = = =

  
                                              (4.13) 

V.  Perturbation Procedure 

 

 We consider thermal modulation and seek the eigenfunction W and eigenvalue R of equation (4.12) for 

the basic temperature distribution (4.9) that departs from the linear profile 0 1
T

z
  = −  

 by using quantities 

of order  . Thus, the eigenvalue of the present problem differs from those of the classical Rayleigh- Bénard 

convection by quantities of  . We seek the solution of equation (4.12) in the form 

 

( ) ( ) ( ) ( )2
0 0 1 1 2 2, , , ,R W R W R W R W = + + + − − − − −  .                                    (5.1) 

 

Malkus and Veronis (1958) first used this type of expansion in connection with the study of finite-amplitude 

convection. Here 0W and 0R  are the eigenfunction and eigenvalue respectively of the unmodulated system and 

( )( ), 1i iW R i   are the corrections due to modulation to  0W and 0R .  

In keeping with Venezian (1969), we insert the expansion (5.1) into Eq. (4.12), and we equal the 

coefficients of different powers of   on  both sides of the equation.  The resulting set of equations is as 

follows: 

0 0LW = ,                                                                    (5.2) 

2 2
1 1 1 0 0 1 0LW R W R f W =   −   ,                                                                                 (5.3) 

2 2 2 2
2 1 1 1 2 1 0 0 1 1 1 1 0LW R W R W R f W R f W =  +  −  −  ,                                               (5.4) 

where 

2 2 2 4 2
0 1

1
.L C R

t Pr t

    
= −   −  +  −        

                                                    (5.5) 

( ) ( ) Re z z i tf A e A e e    − − = + −
 
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Each nW  is required to satisfy the boundary conditions (4.13). Equation (5.2), obtained at 
0( )o  , is the one 

utilized to examine convection in a horizontal layer of Boussinesq-Stokes suspension subjected to a uniform 

gravitational field (refer to Siddheshwar and Pranesh 2004:).  Solutions that are only somewhat stable include  

0 sinW z= ,                                                                                                            (5.6) 

with corresponding eigenvalue  oR given by (see Siddheshwar and Pranesh 2004) 

( ) ( )( )
3

2 2 2 2

0 2

1a C a
R

a

 + + +
= .                                                                        (5.7) 

It is well known that for 0C = , 0R  assumes the minimum value 427 4

0 =cR  at 2=ca .  

At the second stage, the equation for 1W  becomes 

2 2
1 1 0sin sinLW R a z R a f z  = − .                                                                        (5.8) 

The solution to the inhomogeneous equation (5.8) is problematic since it includes a resonance component.  For 

equation 5.8 to be solvable, the time-independent term on the right-hand side must be perpendicular to the null 

space of operator L. L  (Venezian 1969). Since f  varies sinusoidally in time, the only steady term is 

2
1 sinR a z−  so that 1R  must be zero to yield a non-trivial solution. In fact, all the odd coefficients 1R , 

3R , ... are zero. Therefore, equation (5.8) becomes 

( )2
1 0 sinLW R a f z = − .                                                                                        (5.9) 

    Solving Eq.(5.9), subject to Eq.(4.13), yields 1W  and substituting this into (5.4), with 0W  given by Eq.(5.6) 

and 1 0R = , the Venezian (1969) procedure yields 2R in the form: 

( )

( )
( ) ( )

22 2
*0 0

2 2
Re , ,

4 ,

nBR a
R L n L n

L n


 



 = +
   ,                                             (5.10) 

 

 

where  

( )
( ) ( )

( ) ( )

2 2

2 22 2 2 2

2 1

1 1

n i i

n

n e e e e
B

e e n n

     

 

 


   

− − − −

−

 − − + − −
  =

   − + + + −
      

,                                    (5.11) 

(1 )
2

λ i


= − ,                                                                                                         (5.12) 

( ) ( )( ) ( )

( ) ( )( ) ( )

( )

2 3
2 2 2 2 2 2 2 2 2

0 0 0

3
2 2 2 2 2 2 2

0 0 0

2 2 2
0

1

( , )
1

1 1

1
1 ,

n a C n a n a
Pr

L n

a C a i C n a
Pr

i n a
Pr


  



  

 

  
+ − + + + +   

  =  
   + + + + + + +      

  
+ + +  

  

            (5.13) 
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and ( )* ,L n  are the conjugates of ( ),L n  respectively. Three cases of thermal modulation are considered 

in the study: 

Case A:  In –Phase Modulation 

 

           When the oscillating temperature field is symmetric so that the wall temperatures   are    modulated in phase 

(with 0 = ). 

In this case n is even or odd. 

Case B:  Out-Of-Phase Modulation 

 

           When the wall temperature field is asymmetric corresponding to out-of-phase           modulation (with  =  ).  

 

   In this case n is odd. 

Case C:  Only Lower Wall Modulation 

 

When only the temperature of the only lower wall is modulated, the upper plate being held at a constant 

temperature. This case corresponds to i =−   

 

In this case n takes both even and odd values. 

The infinite series (5.10) converges rapidly. 

 

VI.    Minimum Rayleigh Number for Convection 

 

The value of R  obtained by this procedure is the eigenvalue corresponding to the eigenfunction W 

which, though oscillating, remains bounded in time. Since R  is a function of the horizontal wave number a  

and the amplitude of perturbation , as noted in equation (5.1) we have 

0 2
2

R(a,ε)= R (a)+ε R (a)+.............                                                               (6.1) 

The smallest value of the Rayleigh number cR  occurs at ca a= . This critical value of wave number ca  

occurs when 0R a  = . Similarly, we expand ca  in powers of   as: 

2
0 1 1 2ca a a a = +  + + .        (6.2) 

By using the Taylor expansion, the condition 0
R

a


=


 at ca a=  can be written as 

 

2 3 2
2 20 0 0 0 2

1 1 22 3 2
0 00 0 0

1
... 0

2

R R R R R
a a a

a aa a a
 

            
+ + + + + =                        

.               (6.3) 

Equating the coefficients of the like powers of 
2  to zero, we obtain 

0

0

0
R

a


=


, 1 0a = , 

2
02

2 2
0 0

RR
a

a a

   
= −         

.                                                    (6.4)  

A similar expansion of cR  gives 

2 4 2
0 2 4 0 0 2 0( ) ( ) ( )c c c c c cR R R R R a R a   = + + + = + +                               (6.5)  

Now, cR  is determined up to order 
2  by evaluating 0R  and 2R  at 0a a= .  

It was shown by Venezian (1969) that the critical value of R , i.e., cR , to evaluate the critical value of 

2R  is determined to ( )2o ε  by evaluating 0R  and 2R at 0a a= . To evaluate the critical value of 2R  
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(denoted by 2cR ) one has to substitute 0a a=  in 2R  where 0a  is the value at which 0R  given by Eq. (5.7) 

is minimum.  

 

 

 

 

 

VII.   Results and Discussion 

 

         In this research, the consequences of temperature modulation upon convection initiation in Boussinesq-

Stokes suspensions are studied analytically.  The following consequences on the classical Rayleigh-Bénard issue 

are taken into account in accordance with the stated reasoning on convection control: 

(i) inhibition of convection by suspended particles, and 

(ii) temperature modulation. 

Pair stress parameters and stand for these two impacts, respectively.  One thing to keep in mind before diving 

into the findings shown in Figures 2–7 is that in Boussinesq–Stokes suspension, the oscillatory convection mode 

is not a factor.  Additionally, we see that, in comparison to Newtonian liquid, the Prandtl number of Boussinesq-

Stokes suspension is greater. 

 

 
 

 

Figure 2. Plot of R2C versus   for different values of Pr (C= 0.3 & 0 = ) 
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Figure 3. Plot of R2C versus   for different values of C (Pr = 10 & 0 = ) 

 
 

Figure 4. Plot of R2C versus   for different values of Pr (C= 0.3 & 
 = 

) 
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Figure 5. Plot of R2C versus   for different values of C  (Pr = 10 & 
 = 

) 

 
 

Figure 6. Plot of R2C versus   for different values of Pr (C= 0.3 & 
i =− 

) 
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Figure 7. Plot of R2C versus   for different values of C  (Pr = 10 & i =−  ) 

 

In the case of thermal modulation the amplitude   is small compared with the imposed steady 

temperature difference. The validity of the results obtained here depends on the value of the modulating 

frequency . When  →0, the period of modulation is large and hence the disturbance grows to such an 

extent as to make finite amplitude effects important. When 2, 0cR →  → , thus the effect of 

modulation becomes small. In view of this, we choose only moderate values of   in our present study. 

We now discuss the result arrived at in the paper. Three different cases are considered: 

Case A: In-phase modulation, 

Case B:  Out-of-phase modulation and  

Case C: Only lower-wall modulation. 

Fig. 2 is the plot of the critical value of 2R , ie., 2cR , versus frequency     for different values of 

Prandtl number Pr  and fixed values of  couple stress parameter C in respect of in case A. We observe that as Pr 

increases,  2cR  becomes more and more negative. This means that Boussinesq-Stokes suspension more 

vulnerable than Newtonian fluids to destabilization by modulation. It is appropriate to note here that Pr does not 

affect the 0R -part of R (see Eq.5.7). It affects only 2R , as 0R  is the Rayleigh number of the unmodulated 

system. It is also observed that in the case of Boussinesq-Stokes suspension subcritical motions are possible for 

in phase- modulation. 

 

Fig. 3 is the plot of 2cR  versus   for different values of C  and fixed values of Pr in the case of in-

phase modulation. We observe from the figure that as C  increases 2cR  becomes more and more negative.  It 

is interesting to note that for a given value of C, 2cR decreases with   for small values of   and increases 

with   for moderate values of  . Thus, small values of   destabilize and moderate values of   stabilize 

the system. Reason being, at low modulation frequencies, the whole liquid layer experiences the impact of 

thermal modulation on the temperature field.  A temperature profile with in-phase modulated plates has both a 

stationary straight line segment and a time-varying parabolic profile.  The parabolic portion of the profile grows 

in importance in relation to the modulation amplitude.  It is recognized that convection occurs at lower Rayleigh 

numbers than those anticipated by the linear theory due to finite-amplitude instabilities in a parabolic profile.  
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Fig.4 is a plot of 2cR  versus   for different values of Pr and fixed value of other parameters in 

respect of out-of-phase modulation. We find that even though 2cR  decreases with increase in Pr it does not 

become negative. Thus subcritical motion is ruled out in the case of out-of-phase modulation. 2cR  

 

We now discuss the results pertaining to out-of-phase modulation. Comparing Figs.2 and 4 and Figs. 3 

and 5 respectively we can conclude that 2cR is positive for out-of-phase whereas it is negative for in-phase 

modulation. The above results are due to the fact that in the case of out-of-phase modulation the temperature 

field has essentially a linear gradient varying in time, so that the instantaneous Rayleigh number is supercritical 

for half a cycle and subcritical during the other half cycle (see Venezian 1969).  

 

The above results on the effect of various parameters on 2cR  for out-of-phase modulation do not 

qualitatively change for the case of temperature modulation of just the lower boundary. This is illustrated with 

the help of Figs. 6 and 7. The physical explanation is the same as in out-of-phase modulation (see Venezian 

1969).  

 

The results of the study throw light on an external means of controlling convection in Boussinesq-

Stokes suspensions, either advancing or delaying convection  by thermal modulation. It is also observed that for 

large frequencies, the effect of modulation disappears.  
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