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ABSTRACT

When it comes to medical imaging data like CT or MRI images, automatic segmentation of liver tumors is
the process of precisely locating and isolating tumor spots without the need for human involvement. Liver
tumor segmentation is crucial for accurate diagnosis and therapeutic planning of liver cancer. The purpose
of this work is to provide a comprehensive summary of the state-of-the-art approaches to automatically
segmenting liver cancers from medical imaging data. Here, we'll go through some of the more general and
specialized approaches now in use in this field. By allowing for more precise tumor delineation, this
technology may help doctors improve patient outcomes via prompt, individualized treatment. With
increased research and collaboration between the medical and Al fields, deep learning-based liver tumor
segmentation has the potential to become a vital weapon in the fight against liver cancer.

Keywords: Deep Learning, Segmentation, Tumors.

L. INTRODUCTION

The right side of the body, just under the rib cage, is home to the massive, pyramid-shaped liver. The structure
rests just underneath the right lung. It has a bilateral sagittal lobe division. The liver helps in nutrition storage and
digestion. Carbohydrates, lipids, proteins, and starches all contribute to their make-up. Albumin is only one kind
of protein it can make. This aids the maintenance of the body's fluid equilibrium. When someone is bleeding, the
liver produces clotting factors to help the blood thicken and clot. The liver secretes bile, a chemical necessary for
digestion and other bodily processes. The liver plays a crucial role in the body by filtering out harmful substances.
Chemicals may accumulate and cause harm when the liver isn't functioning properly.

A computed tomography (CT) or magnetic resonance imaging (MRI) scan may detect liver cancer, unlike the vast
majority of other malignancies. A CT scan of the abdomen produces high-resolution cross-sectional images.
Additional scan processing is required for liver segmentation and to isolate tumorous areas from the rest of the
CT picture. Tumors in the abdomen CT picture have an intensity that is similar to that of normal tissues, making
segmentation difficult. Because of this, the pictures need amplification and processing to identify cancerous tissue.

In order to detect cancer early and treat it more effectively, recent advances in medical imaging have greatly
enhanced diagnostic and radiation therapy delivery technologies. Many different imaging methods have been
used, each with its own set of advantages and disadvantages. Among them are positron emission tomography
(PET), ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI).
Characterizing HCC in the liver often requires CT, MRI, or US. However, CT scans tend to be the go-to imaging
method throughout the planning stages of a therapy. This research makes use of CT scan simulations, which are
increasingly used in the planning of radiation therapy, to segment the liver and liver tumors.
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Figure 1: The worldwide percentage distribution of cancer types (2018 accessed data)

Automatic segmentation refers to the process of using software to locate tumors in medical images. It requires
programming algorithms for computers to analyze photographic images and determine their meaning. Interest in
deep learning, a subfield of Al, has skyrocketed in recent years because to its impressive performance in various
image analysis tasks, such as medical image segmentation.

1.1 HYPOTHESIS

"Deep learning-based segmentation models will achieve greater accuracy and efficiency than standard image
processing approaches,”" the authors write of using deep learning to isolate liver tumors from other medical
imaging data.

1.2 EXPECTED CONTRIBUTION TO THE STUDY

The proposed study will help to segment the tumor using Deep learning with good accuracy.

1.3 JUSTIFICATION

e  Clinical Significance

- Diagnosis: - Accurate segmentation assists in the early identification and characterization of liver tumors,
allowing for timely diagnosis and intervention. Correct tumour segmentation facilitates the measurement
of tumour size, location, and multiplicity, all of which are crucial for staging and prognostic evaluation.

- Treatment Planning: - Accurate segmentation is necessary for planning surgeries like resection, radiation
therapy, and ablation. Target volumes for radiation therapy may be determined using precision
segmentation, enabling careful dosing to achieve the desired therapeutic effect while sparing normal liver
tissue.

e  Manual Segmentation Limitations
Automated segmentation methods are able to overcome the limitations of manual segmentation when it
comes to liver tumors. There are a number of major limitations to manual segmentation.

- Time-Consuming: - When dealing with large datasets or complex tumor shapes, manual hepatic tumor
segmentation may be a time-consuming and laborious process. Manually defining tumour boundaries for
each image or slice may be time-consuming and stressful, particularly under pressure.

- High Workload and Human Error: - The labor involved in manual segmentation increases the potential
of human error, especially in busy hospital settings. Mistakes in delineation or misconceptions about
patients' conditions may have serious consequences for their treatment.

Overcoming these limitations and using automated segmentation approaches, such as deep learning-based
systems, may improve the accuracy, speed, and consistency of liver tumor segmentation. Automatic segmentation
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techniques aim to overcome these challenges by providing more objective, repeatable, and successful solutions,
which will ultimately benefit patients with liver cancer in terms of diagnosis, treatment planning, and monitoring.

1.4 OBJECTIVES

- In order to measure the efficacy of the model, we will be looking at its F1-score, recall, precision, and
accuracy.

- Inorder to learn, experiment with, and verify the segmentation method.

II. REVIEW OF LITERATURE

When applied to medical images of the liver, deep learning-based automatic segmentation of tumors refers to the
process of using cutting-edge computational methods to automatically detect and segment tumor regions. In this
section, we provide a high-level overview of the literature on the topic of the work.

2.1 LITERATURE SURVEY RELATED TO CURRENT RESEARCH

The authors of this paper (ChangYang Li ef al) [1] provided a well-structured literature evaluation of
probabilistic atlas-based fully automated liver segmentation for low and high-contrast CT volumes. The author
of this work acknowledged that automated liver segmentation is challenging owing to the liver's size and shape
variability and its similarity in density to other organs. They proposed a method that 1) employs iteratively created
probabilistic atlases of the liver and rib cage, 2) employs the Gaussian distribution analysis to prevent the incorrect
identification of the unnecessary surrounding tissues as "liver area" in the conventional probabilistic atlas-based
method, and 3) returns the "missing sections" of the liver via deformable registration. Our automated technique
can extract liver tissue from both high- and low-contrast CT volumes. Forty clinical CT images went towards
making and verifying the atlas. Our method outperformed two other approaches that also relied on a probabilistic
atlas to segment the liver.

Weimin Huang ef al. [2] shown how to use 3D CT scans to identify liver tumors and isolate them from normal
tissue. The process of autonomously detecting tumors may be seen as a two-class classification issue. In order for
the method to be useful for tumor segmentation, each voxel must be properly labeled as belonging to a tumor class
or a nontumor class. Each voxel has its own unique set of characteristics that are represented by a robust feature
vector. An efficient learning algorithm In order to train a voxel classifier, the Extreme Learning Machine (ELM)
is used. They assert that ELM can be trained as a one-class classifier for automated liver tumor diagnosis using
only healthy liver samples as training data, and they provide proof of this. This leads to the development of a
revolutionary approach to cancer diagnosis. They tested it using a binary ELM. To partially automate tumour
boundary detection, we choose training data in 3D space inside a restricted area of interest (ROI) for classifiers.
Our method is put to the test on a dataset of CT scans from real patients, and the results show promising
identification and segmentation results. A major advantage of one-class ELM is its use as a preliminary detection
approach, particularly if a two-class classifier is not well-trained or cannot adequately represent a novel or
previously unrecognized tumor.

Belgherbi, A et al. [3] shown the two stages required for segmentation. Remove the liver as early as possible with
the help of morphological restoration. Second-stage liver lesions may be identified using the watershed change.
Since CT contrast between lesions and liver intensity was low. Image-based liver lesion segmentation is
notoriously difficult. Therefore, anatomical segmentation for hepatic tumors employs mathematical morphology
techniques in an effort to address this problem. For identifying and segmenting focal liver lesions, the provided
method can correctly segment lesions from the patient database. This method allows for the pre-testing of CT scan
images. They put their proposed method to the test on a variety of images, and were pleased with the results. The
detection rate for segments was 92%, with specificity of 99%. Theres’s potential for improved segmentation in
future by taking more nuanced approach to deal with wide variety of lesions & liver's boundaries.

R. Rajagopal, P. Subbiah [4], suggested an innovative and accurate method for segmenting liver tumors using
CT scans. Noise reduction and contrast enhancement are the initial steps in pre-processing a CT scan of the liver.
A support vector machine (SVM) classifier, trained on the user-provided image sets, is then used to label the tumor
region in the liver image. Sequentially applying morphological procedures and feature extractions to the
segmented binary image helps improve the SVM classification's initial segmentation result. The results of the
experiment show that the proposed algorithm outperforms conventional methods. In order to help in subsequent
diagnoses, the study proposes a novel method for categorizing tumors as part of the tumour segmentation strategy.
The main advantage of their method is its ability to quickly and accurately diagnose different forms of liver tumors
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with little human interaction. Future work may include incorporating neural networks and fuzzy algorithms into
the suggested technique to further improve it.

IIT. METHODOLOGY AND EXPERIMENTAL SETUP

3.1 RESEARCH METHODOLOGY

Acquiring patient data was the first stage of the process. The kind of sickness and imaging technique utilized
informed the selection of relevant patient data. The technique then proceeded to standardize the cleaning of the
data, choose a convolutional neural network architecture appropriate for the task at hand, and evaluate the model's
efficacy.

3.2 PATIENT DATA

For this study, we utilized data from the subsets of the 3Dircadb dataset known as 3Dircadbl, 3Dircadb2, and so
on, all of which were taken from the Liver segmentation 3D-IRCADb (3D Image Reconstruction for Comparison
of Algorithm library) database. Each cluster represents an individual patient profile in the larger 3Dircadb dataset.
Because of this, we may consider 3Dircadbl to be a special instance or subset of the larger 3Dircadb dataset.
Three-dimensional computed tomography images from 10 male and 10 female patients, 75% of whom had liver
tumors, make up the 3D-IRCADDb-01 database. Each patient is represented by their own folder, which may be
downloaded independently or all at once. Information regarding the image, such as its width, depth, and height as
well as where the tumors were segmented by Couninaud, is provided in the table below. It also draws attention to
the serious difficulties that liver segmentation algorithms may encounter due to interaction with neighboring
organs, an irregular liver form or density, or even image artifacts.
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Fig 6: Shows data characteristics used in this research
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3.4 IMPLEMENTATION

To get our CNN model up and running, we must first import the necessary libraries. We're making use of these
libraries:

Keras: Python's Keras provides a high-level interface for neural networks. TensorFlow, Theano, and CNTK are
just few of the major deep learning frameworks that it is based on. Keras provides a simple and straightforward
interface for building and training deep learning models like CNNs. It facilitates rapid model prototyping and
experimentation by providing a modular and adaptable framework for constructing diverse neural networks. Keras
is compatible with a wide variety of other Python libraries and may do computations using either the central
processing unit (CPU) or the graphics processing unit (GPU).

Scikit-learn: Scikit-learn, sometimes known as sklearn, is a Python package for machine learning. It offers a wide
variety of techniques and tools for applications including classification, regression, clustering, and dimensionality
reduction. Even if deep learning isn't scikit-learn's main emphasis, it does provide a good basis for more
conventional machine learning tasks by way of its data preparation, model selection, and assessment capabilities.
Common applications include dealing with non-image datasets, doing data preprocessing, and extracting features
from raw data.

NumPy: NumPy is a powerful open-source Python toolkit for numerical computation. It is short for "Numerical
Python" and allows users to deal with massive multi-dimensional arrays and matrices, as well as a wide variety
of high-level mathematical operations. NumPy is an essential module for scientific computing and the foundation
for many other libraries in the Python environment for scientific and data analysis.

OpenCV (cv2): When it comes to computer vision tasks, many developers turn to OpenCV (Open-Source
Computer Vision Library). It has a wide variety of tools and algorithms for working with images and videos, such
as editing, detecting features, identifying objects, and calibrating cameras. In computer vision applications,
OpenCV is especially helpful for data augmentation, visualization, and picture preparation. Many users of Python
may import OpenCV's cv2 module to have access to the library's features.

OS: Python's OS module allows for communication with the OS. You can manipulate files, folders, and processes
in a wide variety of ways. File and directory management, reading and writing environment variables, running
system commands, and manipulating path structures are all examples of frequent OS module use. Loading datasets
from disk, maintaining file directories, and planning the training process are all examples of where the OS module
might be helpful in the context of deep learning and CNNs. Keras, scikit-learn, OpenCV, and the OS module are
libraries that provide crucial features for many facets of deep learning and computer vision projects. Gaining
familiarity with their features and putting them to good use may greatly improve your efficiency while developing
and deploying CNN models.

Importing all the libraries

# Import the ImageDataGenerator class from the tensorflow.keras.preprocessing.image module
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Importing the numpy library and assigning an alias np

import numpy as np

# Importing the tensorflow library and assigning an alias tf

import tensorflow as tf

# Importing the pandas library and renaming it as “pd’

import pandas as pd

# Import the tqdm library for progress bars

from tgdm import tqdm

# Import the os module

import os

# Importing the ‘imread’ and ‘createCLAHE' functions from the "cv2' module
from cv2 import imread, createCLAHE

# Importing the OpencV library

import cvz

# Importing the glob module to retrieve file paths matching a pattern

from glob import glob

# This line enables the display of matplotlib plots inline in Jupyter notebooks
%matplotlib inline

# This line imports the pyplot module from the matplotlib library

import matplotlib.pyplot as plt

# Importing the clear output function from the IPython.display module

from IPython.display import clear_output

# Importing the Adam optimizer from the Keras optimizers module

from tensorflow.keras.optimizers import Adam

#Import the train_test_split function from the scikit-learn library

from sklearn.model_selection import train_test_split

Loading the data
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) train_imgs_path = "../content/3dircadb/3DIRCADB/train/Images/"
train_masks_path = "../content/3dircadb/3DIRCADB/train/Masks™
test_imgs_path = "../content/3dircadb/3DIRCADB/test/Images"”
test_masks_path = "../content/3dircadb/3DIRCADB/test/Masks”

e LIVER SEGMENTATION

model = ResUMet()
adam = keras.optimizers.Adam()
model.compile(optimizer=adam, loss=dice_coef_loss, metrics=["acc", dice_coef])

e TUMOR SEGMENTATION

model = ResUNet()
adam = keras.optimizers.Adam()

model.compile(optimizer=adam, loss=dice_coef_ loss, metrics=["acc"”, dice_coef])

MODEL FITTING (Liver Segmentation)

Epoch 1/28
2e27/2027 | 12027/2027 [: 1 - 9965 49ams/step - less: 2.13@6 - acc: @.9736 - dice coef: @.8694 - val loss: @.1@69 - val _acc: @.9758 - val dice coef: e.g931
Epoch 2/20
2027/2027 [ 12027/2027 [: 1 - 7365 363ms/step - less: 8.8991 - acc: @.9791 - dice_coef: @.9ee9 - val loss: @.157@ - val_acc: @.97@@ - val_dice_coef: B.843e
Epoch 3/20
2027/2827 | 12027/2027 [ 1 - 7345 362ms/step - loss! @.838@ - acc: B.9791 - dice_coef: @.9828 - val_loss: @.8977 - val_acc: @8.9784 - val_dice_coef: @.3823
Epoch 4/20
2027/2827 | 12027/2027 [ 1 - 7345 362ms/step - loss! @.8768 - acc: B.9822 - dice_coef: @.9232 - val_loss: @.8947 - val_acc: @.9783 - val_dice_coef: @.9853
Epoch 5/20
2e27/2827 [ ]2027/2027 [: ] - 7345 3e2ms/step - loss: 8.8733 - acc: ©.9826 - dice coef: @.9267 - val loss: @.1571 - val acc: @.9675 - val dice coef: e.s429
Epoch 6/28
2e27/2827 [ ]2027/2027 [: ] - 7355 3e2ms/step - loss: 8.8662 - acc: ©.9832 - dice coef: @.9338 - val loss: @.9792 - val acc: @.9892 - val dice coef: e.ez2es
Epoch 7/28
2e27/2027 | 12027/2027 [: 1 - 7345 3e2ms/step - loss: 2.8626 - acc: 0.9835 - dice coef: @.9274 - val loss: @.1453 - val acc: @.9722 - val dice_coef: e.8547
Epoch 8/20
2027/2027 [ 12027/2027 [: 1 - 7345 3e2ms/step - loss: 2.8538 - acc: @.9845 - dice_coef: @.9462 - val_loss: @.8682 - val_acc: @.9834 - val dice_coef: @.9298
Epoch 9/2@
2027/2827 | 12027/2027 [ 1 - 7345 362ms/step - 105s! @.8499 - 3cC: 8.9849 - dice_coef: @.9501 - val_loss: @.8481 - val_acc: @.9845 - val_dice_coef: @.3519
Epoch 18/28
2027/2827 | 12027/2027 [ 1 - 7345 362ms/step - 1oss! @.8428 - acc: B.9859 - dice_coef: @.9572 - val_loss: @.8832 - val_acc: @8.9798 - val_dice_coef: @.9168

Epach 11/28
26827/2827 [ J2e27/2027 [: ] - 7335 362ms/step - 1oss: @.8394 - acc: @.9862 - dice_coef: @.96@6 - val_loss: @.1244 - val acc: @.9721 - val_dice coef: @.8756

Epoch 12/28
20827/2827 [ J2027/2027 [: 1 - 7325 361ms/step - loss: .8359 - acc: 0.9886 - dice_coef: @.9641 - val_loss: @.9668 - val acc: @.9818 - val_dice coef: @.9332

Epoch 13/28
20827/2817 [ ]2027/2027 [: ] - 7325 361ms/step - loss: .83@5 - acc: ©.9871 - dice_coef: 2.9635 - val loss: @.8412 - val acc: @.3853 - val_dice coef: @.9588

Epoch 14/28
20827/2817 [, ]2827/2027 [: ] - 7325 361ms/step - loss: 8.8313 - acc: @.9871 - dice_coef: 8.9687 - val_loss: @.8451 - val_acc: .3848 - val_dice_coef: 8.9543

Epoch 15/28
20827/2827 [ J2627/2027 [: ] - 7345 362ms/step - loss: @.8292 - acc: @.9873 - dice_coef: 8.59788 - val_loss: @.2857 - val acc: .3647 - val_dice_coef: 8.7343

Epoch 15/28
2027/2827 | 12027/ 2027 [: ] - 7345 3G2ms/step - loss: @.@277 - acC: @.9875 - dice_coef: @.9723 - val_loss: @.8263 - val acc: @.9873 - val_dice_coef: 8.9737

Epach 17/28
2027/2827 | 12627/ 2027 [: ] - 7325 36Ims/step - loss: @.@282 - acc: @.9874 - dice coef: @.9718 - val lossi @.8284 - val acc: @.9872 - val_dice coef: 8.9736

Epoch 18/28
20827/2827 [ J2027/2027 [: ] - 7325 361ms/step - 1oss! @.8246 - aCC: 0.9879 - dice_coef: @.9754 - val loss: @.8248 - val acc: @.9875 - val_dice coef: @.9752

Epoch 13/28
20827/2817 [ ]2027/2027 [: ] - 732s 361ms/step - loss: @.824@ - acc: ©.9879 - dice_coef: @.9762 - val_loss: @.8268 - val acc: @.3872 - val_dice coef: 8.9732

Epoch 28/28
2827/2817 [ 12827/ 2027 [: 1 - 733s 3a2ms/step - loss: 8.8242 - acc: @.9879 - dice_coef: 8.9758 - val_loss: @.8224 - val_acc: @.3878 - val_dice coef: 8.3776
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MODEL FITTING (Tumor Segmentation

Epoch 1/58
202772027 12027/2027 [ 1 - 8495 219ms/step - loss: ©.3623 - acc: 9.9933 - dice coef: 2.6277 - val loss: ©.788¢ - val acc: @.9922 - val dice coef: .2120
Epoch 2/58
2027/2027 [ 12027/2027 [ 1 - 7415 365ms/step - loss: €.2845 - acc: 9.9965 - dice coef: @.7155 - val loss: .272¢ - val acc: .9959 - val dice coef: @.7280
Epoch 3/58
202772027 12027/2027 [: 1 - 7395 365ms/step - loss: €.2535 - acci ©.9969 - dice coef: 2.7465 - val loss: ©.4048 - val acc: €.9956 - val dice coef: .5952
Epoch 4/58
202772027 12027/2027 [: 1 - 7395 365ms/step - loss: €.2428 - acci ©.9971 - dice coef: @.7572 - val loss: .237@ - val acc: €.9968 - val dice coef: @.7620
Epoch 5/58
2027/2027 J2027/2027 [: ] - 733s 3eims/step - loss: 2.2331 - acc: 8.9872 - dice_cosf: 2.7619 - wal_loss: 2.2115 - val_acc: @.5971 - val_dice_coef: 8.7385
Epoch &/58
2027/2027 12027/2027 [ ] - 7385 3gems/step - los: 2351 - acc: ©.3873 - dice_cosf: 8.7743 - wal_loss: 2.4253 - val_acc: 8.5988 - val_dice_cosf: 8.5741
Epoch 7/5@
2027/2027 12027/2627 [ 1 - 738s 366ms/step - loss: ©.2218 - acc: 8.9573 - dice_coef: 8.7750 - val_loss: 8.2852 - val_acc: 8.5356 - val_dice_coef: 8.7188
Epoch 8/5@
2027/2027 12027/2627 [ 1 - 7325 361ms/step - loss: 8.2114 - acc: 8.9574 - dice_coef: 8.7586 - val_loss: 8.1772 - val_acc: 8.5976 - val_dice_coef: ©.5228
Epoch 9/5@
2027/2827 12027/2627 [ 1 - 738s 366ms/step - loss: ©.2076 - acc: 8.3575 - dice_coef: 8.7524 - val_loss: 8.2578 - val_acc: 8.3963 - val_dice_coef: 8.7438

Epoch 18/se
2827/2027 12037/2027 [ 1 - 7285 359ms/step - 10ss: ©.2103 - acc: B.9975 - dice_coef: 8.7897 - val_loss: @.2635 - val_acc: 8.9964 - val_dice_coef: ©.7385

Epoch 11/52
2027/2027 12027/2027 [ ] - 7235 353ms/step - los:

1 8.2081 - acc: 8.5875 - dice_cosf: 8.7553 - wal_loss: 8.1785 - val_scc: 8.5375 - val_dice coef: .3215

Epoch 12/58
2027/2027 12027/2627 [ 1 - 7285 355ms/step - loss: 8.1953 - acc: 8.9576 - dice_coef: 8.8841 - val_loss: 8.6279 - val_acc: 8.5933 - val_dice_coef: 8.3721

Epoch 13/50
2027/2827 12027/2627 [ 1 - 7295 355ms/step - loss: ©.1928 - acc: ©.9577 - dice_coef: 8.8688 - val_loss: 8.1768 - val_acc: 8.3977 - val_dice_coef: .5388

Epoch 14/52
2027/2027 12037/2027 [ 1 - 7285 359ms/step - 10ss: ©.1826 - acc: B.9978 - dice_coef: 8.8174 - val_loss: @.1889 - val_acc: 8.9975 - val_dice_coef: ©.8111

Epoch 15/58
2827/2027 12037/2027 [ 1 - 7285 359ms/step - los:

: ©.1869 - acc: 8.9978 - dice_coef: ©.8131 - val_loss: .1869 - val_acc: ©.9977 - val_dice coef: .8151

Epoch 15/58
2827/2827 12027/2027 [ 1 - 7275 359ms/step - 10ss: @.1827 - acc: B.9978 - dice_coef: 8.8173 - val_loss: 8.1948 - val_acc: 8.9971 - val_dice_coef: 0.8852

Epoch 17/58

2827/227 12027/2027 [ 1 - 7225 356ms/step - 10ss: @.1795 - acc: B.9978 - dice coef: 2.8285 - val 1oss: 8.1634 - val_acc: 8.9978 - val_dice coef: 0.8366

Epoch 18/58

202772827 12027/2027 [ 1 - 7275 359ms/step - 1oss: @.1852 - acc: B.9978 - dice coef: 2.8148 - val loss: @.233@ - val acc: 8.9966 - val_dice coef: 8.7679

Epoch 13/58

202772027 12027/2027 [ 1 - 7265 358ms/step - 10ss: @.1724 - acc: B.9979 - dice coef: 2.8276 - val 10ss: @.164@ - val acc: 8.9978 - val_dice coef: .8369

Epoch 28/58

2027/2027 [ 12027/2027 [ 1 - 7265 388ms/step - loss: ©.1732 - acc: ©.897% - dice_coef: ©.8268 - val_loss: 0.1686 - val acc: 0.9978 - val_dice_coef: 8.8315

Epoch 21/s8

2827/2827 [=mm=== =]2027/2027 - 728: 3sEms/step - lossi @.1632 - acc: 0.5980 - dice_coef: ©.3318 - val_lossi ©.1567 - val_acc: 8.5978 - val dice_coef: 8.8433
Epoch 22/58
2027/2027 [ 1202772027 [ 1 - 7265 3sems/step - loss: ©.1853 - BCCI 9.8980 - dlce_coef: ©.8247 - val 10s5: 9.1579 - VAL BCC! 8.8978 - VAl _dice COef: 8.8421
Epoch 23/58
2027/2027 [==m=== ~12027/2027 1 - 7275 359ms/step - loss: 8.1722 - scc: 8.9979 - dice_coef: ©.8278 - val_loss: ©.3536 - val_scc: ©.9968 - val_dice_coef: 8.6383
Epocn 24/5@
2027/2027 [ 1202772027 [ 1 - 7275 389ms/step - loss: ©.163@ - acc: 0.9980 - dice_coef: ©.837¢ - val_loss: 90,1898 - val_acc: 9.8978 - val_dlce_coef: 8.8482
Epoch 25/58
2827/2827 [=mm=== 1282773027 [ - 727: 3ssme/step - lossi @.1563 - acc: 0.5981 - dice_coefi ©.3437 - val_lossi ©.1588 - val_scc: 8.5578 - val_dice_coef: 0.8500

Epoch 26/58
2027/2027 [ 1202772027 [ 1 - 7275 3sems/step - loss: ©.1588 - BCCI 9.9981 - Jlce_coef: ©.8428 - val_loss

©.1561 - val_acc: 2.9979 - val_dice_coef: ©.8429

Epoch 27/58
2827/2027 [=

J2e27/3027 [ - 7275 3ssme/step - lossi @.1571

2 ©.5951 - dice_coef: @.2428 - val_loss: 8.1717 - val_acc: @.5978 - val_dice_coef: @.8283

Epoch 28/58
2027/2027 [ 1202772027 [ 1 - 7275 3sems/step - loss: ©.1586 - BCCI 9.8982 - Jlce_Coef: ©.8484 - val_loss

©.1507 - val_acc: 2.9989 - val_dice_cOef: ©.8483

Epoch 23/58

2027/2027 [==m=== =12027/2027 [=== - 7275 359ms/step - loss: @.1297 - scc: ©.9982 - dice_coef: ©.3503 - val_loss: @.157@ - val_scc: ©.9978 - val_dice_coef: o.8a3e
Epocn 39/5¢
2027/2027 [ 1202772027 [ 1 - 7275 3sams/step - loss: ©.1477 - acc: 0.8982 - dice_coef: ©.8523 - val_loss: 9.1477 - val_acc: 9.8980 - val_dlce_coef: 8.8523

Epoch 31/58

2827/2827 [==m=== =12027/2027 [=== - 7275 3ssms/step - lossi @.1478 - ©.5882 - dice_coef: ©.8522 - wal_lossi ©.2773 - val_scc: 8.5965 - val_dice_coef: 8.7227
Epoch 32/50
2827/2027 [ 1202772027 [ 1 - 7275 38Sms/step - loss: 9.1456 - acc: 8.9982 - dice_coef: @.8542 - val_loss: ©.1512 - val_acc: .9888 - val_dice_coef: 8.8488
Epoch 33/58
2e27/2827 1202772027 [ 1 - 7275 3sEms/step - loss: ©.1455 - Bcc: 9.9982 - dice coefi ©.8545 - val loss: 8.2388 - val 8cci 8.9968 - val dice coef: 8.7812
Epoch 33/50
2827/2027 [ 1202772027 [ 1 - 7275 35Sms/step - loss: 9.1428 - acc: 8.9983 - dice_coef: 9.8572 - val_loss: ©.1377 - val_acc: 8.3881 - val_dice_coef: 8.8623
Epoch 35/58
2e27/2827 J2027/2027 [ 1 - 7285 3ssms/step - loss: ©.1383 - Bcc: 9.9983 - dice coefi ©.3807 - val loss: 8.2255 - val Bcci £.3878 - val dice coef: 8.7745

Epoch 38/58
2027/2027 [ 12027/2027 [ 1 - 7273 3sEmsistep - loss: @.1371 -

s 0.9982 - dice_coef: ©.8629 - val_loss: £.1780 - val_ncc: 9.9977 - val_dice_coef: 0.8220

Epocn 37/58
2027/2027 12027/2027 [ 1 - 7285 3s9ms/step - loss: @.140@ - ace: 0.99a3 - dice_coef: ©.8600 - val_less: 0.1509 - val_ace: .9979 - val_dlee_coef: 0.8500

Epoch 38/50
2827/2027 [ 1202772027 [ 1 - 7275 38Sms/step - loss: 9.1364 - acc: 8.9984 - dice_coef: 9.8636 - val_loss: 9.1827 - val_acc: .8874 - val_dice_coef: 8.8873

Epoch 39/58
2027/2027 |

-]2e27/2027

- 7275 353ms/step - loss: 0,135 - acc: 0.9984 - dice_coef; ©.8655 - val_loss: 2,1332 - val_acc: 9.3982 - val_dice_coef: 0.3668

Epoch 48/58
2027/2027

- 7275 359ms/step - loss: ©.1317 - acc: ©.9984 - dice_coef: ©.8683 - val_loss: ©.2249 - val_acc: @.5970 - val dice_coef: .7751

Epoch 21/58
2027/2027 |

smamszsnazas]2027/2027 [amssmasan

=s] - 7275 353ms/step - loss: 0.1316 - acc: 8.9984 - dice_coef: 0.8684 - val_loss: 9.2441 - val_acc: 9.5966 - val_dice_coef: 0.7559

Epoch 42/5¢

2e27/2027 2027/ 2027

- 7275 359ms/step - loss: ©.1238 - acc: ©.3985 - dice_coef: 8.8762 - val_loss: .1293 - val_acc: €.9983 - val dice_coef: 8.5787

Epoch 43/58
2e27/2@27 [

awsmanan]2027/2027

1 - 7275 359ms/step - loss: ©.1267 - acc: 0.9985 - dice_coef: @.8733 - val_loss: €,1293 - val_acc: @.9983 - val _dice_coef: 8.8707

Epoch 44/50

2027/2027 2027/ 2027

- 7275 359ms/step - loss: @.1283 - acc: ©.3935 - dice coef: 2.5737 - val loss: @.125@ - val acc: @.9953 - val dice coef: 9.5752

Epoch 45/5@
I ETET S N —

mmmssssmesss]2027/2027 [smsssssesmssesssssesssssssssss] - 7275 359ms/step - loss: 0.1216 - acc: 2.9985 - dice_coef: €.8788 - val_loss: 8.1171 - val_ace: @.5384 - val_dice_coef: 0.3529

Epoch 45/5@

2827/2027 2627/ 2027

- 7275 353ms/step - loss: ©.1248 - acc: 0.9385 - dice_coef: 2.8752 - val_loss: 2,1144 - val_scc: 8.338¢ - val_dice_coef: 0.3356

Epoch 47/5¢

2027/2027 [ =2027/2027 [=

- 7275 359ms/step - loss: ©.1252 - acc: ©.9985 - dice_coef: ©.5748 - val_loss: 8.1699 - val_acc: @.5979 - val dice_coef: 0.8301

Epoch 45/58
2027/2027

=12027/2027 - 7275 359ms/step - loss: @.1227 - acc: 9.9985 - dice_coef: @.8773 - val_loss: @.145@ - val_acc: 0.9989 - val_dice_coef: @.8sse

Epoch 49/50
2e27/2027

- 7275 359ms/step - loss: @.1188 - acc: ©.9986 - Oice coef! @.8828 - val loss: 2.1664 - val acc: @.9979 - val dice coef: 0.8326

Epoch 5e/5@
P Tz T ——

ammmmznsnzae]2027/2027 [semsmanss:

mssssmsmssmssssss==] - 7275 359Ms/step - loss: ©.1162 - acc: 0.9986 - dice_coef: ©.8838 - val_loss: .1185 - val_acc: 2.9982 - val_dice_coef: 0.8815
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Model summary:

e Liver Segmentation

Layer (ty Qutput Shaps Param & Cennected to batch_normalization_s (Batchhor (None, 64, 64, &64) 256 add_3[e][e]

(Mone, 385, 255, 3) @ activation_g (Activation) (Mone, 62, 64, 54) e batch_normalization_s[e][e]
convzd_1 (ConvaD) (None, 256, 256, 16) 228 input_1[e1[a] convzd_18 (ConvzD) (none, 3 73856 activation_s(el[8]
batch_normalization_1 (BatchMor (Mone, 256, 256, 16) 64 conv2d_1[e][e] batch_normalization_le (BatchNo (None, 512 convad_1e[e][e]
activation_1 (Activation) (Mone, 255, 258, 15) @ bateh_normalization_i[e][e] Convad_1z {ConvzD}) {none, EEE) add_z[el[e]
convad_2 (Convzpy (Hone, 256, 258, 18) 64 Tnput_1le1re] activation_7 (Activat {none, e batch_normelization_1e[e][e]
convzd_z (convzDy (none, 258, 238, 18) 2320 activation_1[elle] batch_normalization_11 (BatchNo (None, s1z convzd_1z[e](o]
batch_normalization_2 (BatchMor (Mone, 258, 256, 16) &4 convad_3[@][e] conv2d_11 {ConvD} (None, 147584 sctivation_7[@][a]
sda 1 (add) (Hone, 255, 258, 18} & comvzd_zZ[e][0] 3dd_= (Add) {none, e batch_normalization_11(e](e]

ateh _normalizstion 2[8][8] convad_11[e][e]
batch_normalization_3 (BatchNor (None, 256, 256, 16) 64 add_1[e][e] batch_normalization_12 (BatchNo (None, 512 add_sa[e][e]
activation_2 (Activation) (None, 256, 255, 16) @ batch_normalization_3[e][e] sctivation s (activation) {nene, 3 e bateh_normslizstion_12(e]le]
convad_# (Convzpy (None, 128, 128, 32) 2648 activation_2[elle] conv2d 12 {cenvan) (Henz, 2es1es sctivation slellel
batch_normalization & (BatchWor (Mone, 128, 128, 32) 128 comvzd_s[e1le] pEmehnermalization 2 (Eatcie (nens, ee convad zleltel
ot Tconvzo) THone a =
convad_6 (ConvaD) (Nene, 128, 128, 32) 544 add_1[e][e] convzd_15 {Comv2o) {nene, 2302 dd_s[e]re]
tivati (activation) (none, \_normalization_:
activation_2 (Activation) (Mone, 122, 128, 22) @ batch_normalization_2[@][@] sctivation s (activation) e e batch_normslizstion i3felle]
- batch_normalization_14 (BatchNo (None, 1824 convad_15[e][e]
batch_normalization S (BatchNor (Mone, 128, 128, 32) 128 conv2d_s[@][8]
_ conw2d_14 {Conv2D) {Mone, sseese activation_a[@][@]
convzd 5 (ConvaD) (None, 128, 123, 32) 3248 activation_3[@][e]
add_5 (Add) (None, 8 batch_normalization_i4[e][e]
ada_2 (Add) (Mone, 128, 128, 32) @ bateh_normalization_s[e][e] convad_1a[e][a]
conv2d_s[e][e] -
batch_normalization_15 (BatchNo (Wone, 16, 16, 255) 1824 add_s[e][e]
batch_normalization 6 (BatchWor (Mone, 128, 128, 32) 128 2dd_z[e][e]
activation_1@ (Activation) (Mone, 16, 16, 256) © batch_normalization_15[e][8]
activation_4 (Activation) (Mone, 128, 128, 22) @ batch_normalization _s[@][@]
convzd_16 (ConvzD) (None, 15, 16, 255) 5sewss activation_1e[el(8]
convad_7 (Comv2D) (Mone, &2, &4, £2) 13488 activation 4[e][8]
batch_normalization_16 (Batchno (None, 16, 16, 256) 1824 convad_1s6[e][e]
batch_normalization_7 (BatchNor (Mone, 62, B2, 62) 2565 conv2d_7[@][8]
tion_11 (Activation) (None, 16, 16, 256) @ batch_normalization_ic[e][e]
convzd_S (ConvaD) (None, 64, 63, 54) 2112 3dd_z2[e][e]
17 {ConvzD) {None, 18, 16, 256) soeese activation_1i[e][@]
activation_s (Activation) (Mone, 64, 64, 54) @ batch_normalization_7[e][e]
up_sampling3d_1 (UpSampling2D) (Mone, 32, 22, 355) © convad_17[e][e]
batch_normalization & (Batchior (Mone, 2, 62, 62) 258 comvzd_a[elle] -
Concatenate_1 {Concatenate) (None, 32, 32, 232) @& up_sampling2d_1[@][e]
convzd_g (convzo) (Mone, &%, &4, 82) 38v2s activation srelle] add_sfelle]
293 (Aad) Tlons, &2, 22, &) @ baten_normalization E8118] batch_normalization_ 17 (Eatchmuo (Wone, 1526 concatenate_1[e][@]
conv2d_g[8][8] Sctivation 12 (Activation) THon=, £y batch_normalization _17[@][e]
onvad_1s (comzD) (none, 32, s8as52 activation 1z[e])(a] conv2d_25 (Conv2l) {None, 128, 123, &4) 35828 activation_17[@][8]
batch_normalization_1s (atchno (Hone, 32, 1024 conv2d_1s[elle]
Convaa_z8 (ComiaD) (hone, 32, SEsee Concatenate_1[81La] add_& (Add) (None, 128, 123, &4) @ batch_normalization_25[@][e]
activation 12 (Activation) (Mone, 32, 32, 256) @ batch_nermalization 1s[e][e] CCH‘.’Ed_Q:[E‘][B]
batch_normalization_12 (Batchio (Wone, 32, 32, 256) 1824 convad_ze[e]le]
5 ingd & [ 1 None. 56 156 &4 -
convad_19 (ConvzD) (Mone, 32, 32, 256) S98@8@ activation_13[e][@] up_;ar'plj.ng;c_— '\UFSaWP-lﬁE?D) \NUH".I 25”J ‘56.1 ") ] Cdd_s[e][a]
2dd_& (Add) (Mone, 32, 32, 256) @ batch_normalization 13[e][e] " T B
convad_aspeltel concatenate 4 (Concatenate) None, 256, 156, 88) @ up_sampling2d 4[8][e
- ) ? ! ? ’ - e
Up_samplingzd_2 (UpSampling2D) (None, 63, 64, 256) © dd_s[e][e] add 1[3\][3]
concatenate_3 (Concatenate) (None, &4, 64, 228) © up_sampling2d_2[@][e]
2dd_z[#][e] T - 3
batch_normalization_26 (Batchio (Nome, 256, 25, 88) 320 concatenate_4[e][a]
batch_normalization_2e (Batchuo (Mone, 62, 52, 320) 1288 concatenate_z[e][a]
activation_1a (Activation) (None, &4, 63, 328) © batch_normalization_2e[e][@] . : i A ~ p—— :
activation_18 (Activation) {None, 256, 255, 28) 8 batch_normalization_26[8][e]
convad_21 (Conv2D) (Mone, &2, &4, 123) 253762 activation_14[e][@]
batch_normalization_21 (Batchuo (None, &2, 62, 128) 512 convad_21[e][e r— - - = ET—
- - ) feeel conv2d_37 (Convan) (Nong, 256, 256, 32) 23872 activation_13[@][a]
conv2d_23 (ConvaD) (None, 64, 64, 128) 41888 concatenate_z[@][@]
= (Activation) thone, &4, &3, 12 rormelizetion S ——— - -
activation_15 (Activation) (Mone, &4, &4, 128) @ batch_normalization_z1[e][e] I:atch_numa].l;atmn_ 7 :BctChNU :NUFIE, 25% :5&] 32) 128 LI'I‘.’Z:]_ET[B][B]
batch_normalization_22 (Batchuo (None, &2, 62, 128) 512 convad_2z[e][e]
~7d 22 (Conva THone . 2. 63, 125) 147582 Zetivation 1% wid 26 {Canuany fNone. 96 9 Y32 aneE
convad 22 (Convap) (ene, 62, 6, 128) 14758 sctivation 1s[e](e] convad_29 (ConvaD) {None, 256, 2%, 32) 2592 concatenate_a[@][e]
2dd_7 (Add) (Mone, &4, 64, 128) @ batch_nermalization 22[2][@]
convad_22[e][e] — — ~ r—
activation_19 (Activation) {None, 256, 256, 32) @ batch_normalization_27[@][@]
up_sampling2d_3 (UpSampling2D) (Mone, 128, 128, 128 @ add_7[@][e]
concatenate_3 (Concatenate) (None, 128, 128, 168 @ up_sampling2d_3[e][e] P - ~ = -
20d 21811 batch_normalization_28 (Batchuo (Nome, 256, 256, 32) 128 conv2d_2a[e][e]
batch_normalization_22 (Batchuo (None, 128, 128, 150 628 concatenate_3[el[a]
wad 32 frameany T £ 9 activati
activation 16 (Activation) (none, 128, 128, 168 © batch_normalization 23[@][8] Ca “d_"-s {ConvaD) {None, 256, 2%, 32) 9248 cC‘thE‘t_Dﬁ_l?[E‘][@]
conv2d_24 (Conv2D) (Mone, 128, 128, 64) 92224 activation_16[e][@]
in - ) 3 . -
batch_normalization 24 (Batchio (None, 128, 128, 64) 256 convad_zalelle] add 2 (add) (None, 256, 256, 32) 8 batch_nornslization 25[e](e]
conv2d_28[8][8]
conv2d_26 (ConvaD) (Mone, 128, 128, 64) 18384 concatenate_2[2][8] -
activation 17 (Activation) (Hene, 128, 122, &4) @ batch_normalization _24[@][e] . - -
convd 38 (Convan) (None, 256, 2%, 1) 33 add_a[e][@
— ) I v ] 1 ] —
batch_normalization 25 (Batchuo (None, 128, 128, 64) 256 convad_zs[e]le]
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Tumor Segmentation

Leyer (typs) Cutput shape Faram & Connected to PR BT e . = e
input_1 (Inputlayer) {None, 258, 256, 3) @ 3dd_z (Add) (None, &%, £, 641 @
conv2d (Conv2D) {None, 256, 256, 18) 443 input_i[el[e]
- batch_normalization_vl_8 (Batch (Mone, &2, &4, £4) 258 add_z[e][®]
batch_normalization vi (Batchio (None, 256, 256, 16) &4 convad[e]le]
activation & (Activaticn) (None, &2, &2, 64) @ batch_normalization_vi_s[@][e]
activation (Activat {Nene, 256, 255, 18) © batch_normalization_vilelle]
conv2d_5 (Comv2D) {None, 32, 32, 128) 73856 activation 5[0][0]
conv2d_2 {ComvaD) {None, 256, 256, 18) &4 input_i[el[e]
batch_normalization_vl_3 (Batch (MNone, 512 convzd_s[e][8]
conv2d_1 {ComvaD) {None, 256, 256, 1§) 2328 activation[8][e]
Conv2d_11 {Conw2D) {None, 8328 2dd_z[@][2]
batch_normalization_wl_1 (Batch {None, 256, 256, 15) 64 convad_z[e][8]
activation_6 (Activaticn) {Hone, ® batch_normalization_vl_5[@][@]
add (Add) {None, 256, 258, 15) @ convad_1[e][e]
batch_normalization batch_normalization_vl_18 (Batc (None, 512 convzd_11[e][e]
batch_normalization_wl_z (Batch {None, 256, 256, 15) 64 add[e][e] Conv2d_1e {convap) (Mone, 1a7584 activation_s[e][@]
activation_1 (Activation) {None, 256, 256, 16) @ batch_normalization, add_z (Add) (None, e batch_normalization_vi_ie[e][e]
convad_1e(el[e]
convzd_2 {ConvaD) {None, 128, 128, 32) 2648 activation_i[e][@]
batch_normalization_vl_11 (Batc (None, 32, 32, 128) 512 add_3[e][e]
batch_normalization_vwi_3 (Batch {None, 128, 128, 32) 128 conv2d_3[e][e]
activation_7 (Activatien) (None, 32, 32, 128) @ patch_normalization_vl_1i[e]l[e]
w2d_s (ComvaD) {None, 128, 128, 32) 544 zad[e][e
convaa_s teen e feited Convzd_1z (cenvan) Gnone, 15, 15, 256) 295168 activation_7[eite]
activation_2 (Activation) {None, 128, 128, 32) @ batch_normalization_vi_3[e][e] I T S T P e e S TETCERY FETEEREIENIE
batch_normalization_vi_s (Batch (None, 128, 128, 32) 128 convad_s[el[e] T RS TR T T e e RN
convzd_s (comvan) (nene, 128, 128, 32) 238 activation_zlelle] activation_g& (AcCtiw on) (Mone, 16, 16, 256 e patch_normalization_vl_12[e]l[e]
add_1 (Add) {None, 123, 128, 32) @ batch_normalization v1_slelle] batch normalization vi 17 (Batc (None, 16, 15, 256) 1924 Cenvad_aelle]
convad_s[e][e]
batch_normalization_vi_s (Batch (Nens, 128, 128, 32) 128 add_1[elle] convzd 12 (conv2n) (Mene, 15, 1g, 258) s990se activation_s[elle]
activation_# (activation) {none, 128, 128, 32) @ batch_normalization vi s(elle] sdes taee (rone, 12, 18, 2590 @ Eiﬁfgg”i;'{':';'E;?“““‘Uzmm
conv2d_& (Conw2D) (Nons, &2, 84, &2) 13438 activation_3[e][e] batch_normalization_vi_14 (Batc (None, 16, 16, 255) 1824 add_sa[e][e]
batch_normalization_vl_6& (Batch (None, &4, 64, 64) 256 convad_&[21le] activation_s (Activation) (None, 16, 16, 256) @ batch_normalization_vi_is[e][e]
convzd & (Comv2D) {None, &2, &2, &2) 2112 add_1[2][e] convad_15 (ConvzD) (None, 15, 15, 255) 5%888e activation s(el(e]
activation & (Activation) (None, &2, 84, &2) 2 batch_nermalization vi s[@][2] batch_normalization_vi_15 (Batc (None, 16, 16, 256) 1824 conv2d_15[e][e]
batch_normalization_wl_7 (Batch {None, 64, 64, 64) 256 conv2d_s[e][8] activation_ 18 (Activation) (none, 15, 15, 258) @ batch_normalization_vi_15[81[8]
conv2d_16 (Conva2D) (Mone, 16, 16, 256) 590ese activation_1e[e][e] 330 1[2][]
up_sampling2d (UpSampling2D) (None, 32, 32, 256) @ convad_16[8][a] batch_normalization wl 22 (Batc (None, 128, 128, 168 648 concatenate_2[@][8]
concatenate (Concatenate) (Mone, 32, 32, 234) @ up_samplingzd[e][e] activation 15 (Activation) (None, 128, 128, 168 @ batch_normalization_vi_22[@][e]
add_3[e][e]

- v2d_23 (Conv2D) (None, 12 54) 92224 activation_1s
batch_normalization vl 1s (Batc (None, 32, 32, 384) 1536 concatenate[e][e] conv2d_23 (Convan) (None, 128, 128, &4) 9222 activation 13[2][e]
activation_11 (Activation) {None, 32, 32, 384) @ batch_normalization_vi_15[8] (8] batch_normalization vl 23 (Batc (Nome, 128, 128, &4) 255 conv2d_23[e][e]
conv2d_17 {Comv2D) (Mone, 32, 32, 258) 884992 activation_11[e][e] conv2d_25 {Conv2D) (None, 128, 128, 64) l1e3p4 cencatenate_2[@][8]

T zat! (Batc (None, 32, 32, 258 2 oy i vati 5 1izati
bateh_normelization vi 17 (gatc (Hene, 32, 22, 258) 1824 cenv2g_17(2lle] activation 16 (Activation) (None, 128, 128, 64) @ batch_normalization vi_23[e][e]
conv2d_19 (ConvaD) (Mone, 32, 32, 256) 98568 cencatenate[e][e] - -

batch_normalization_vl_24 (Batc {None, 128, 128, &4) 256 conv2d_25[#][e]
activation_12 (Activation) {None, 22, 32, 25&) @ batch_normalization_vi_17[8] €]
conv2d_24 {Conv2D) {None, 128, 128, &4) 35928 activation_16[e][e]
batch_normalization_vl_1% (Batc (Mone, 32, 32, 256) 1824 conv2d_13s[e][e]
(Al {None, 12, 64) rmalization_vi_24|
convzd_18 (ConvaD) (Mone, 32, 32, 256) 59@ese activation_12[e][e] add_7 (Add) (None, 128, 128, &4) @ batch_normalization vi_2¢[e](e]
convad_24[@][e]
add_5 (Add) (Mone, 32, 32, 256) @ batch_normalization_vi_1s[e][e]
conv2d_18[#][8] up_sampling2d_3 (UpSampling2D) (None, 256, 256, &4) @ add_7[@][e]
up_sampling2d 1 (UpSampling2D) (Mone, &4, &4, 258) @ sdd_s[e][e] concatenate 3 (Concatenate) (None, 256, 255, 28) @ up_sampling2d_3[e][e]
concatenate_1 {Concatenate) (Mone, &4, 64, 328) @ up_sampling2d_1[e][e] add[e][e]
sdd_2[e][e] F— -
batch_normalization_vl_25 (Batc {None, 255, 256, 5@) 328 concatenate_3[@][e]
batch_normalization vi 12 (Batc (Mone, 63, &4, 328) 1280 concatenate_1[e][e]
activation_17 (Activation) (None, 256, 256, 88) @ batch_normalization vi_25[@][e]
activation_13 (Activation) (Mone, &4, 62, 328) @ batch_normalization_vi_19[e][e]
— conv2d_26 {Conv2D) (None, 256, 256, 32) 23872 activation_17[e][e
conv2d_28 (ConvaD) (Mone, &4, g4, 128) 382788 activation_13[e][8] -8 ke ' 1 5 ! “ L17fe]le]
batch_normalization vl 20 (Batc (None, 64, €2, 128) 512 conv2d_2e[e][e] bateh_normalization vl 25 (Batc (Nene, 255, 255, 32) 122 conv2d_26[@][e]
convad_22 (convaD) (Mone, 84, 64, 128) 41838 concatenate_1[e][e] conv2d_28 {Conv2D) (None, 256, 256, 32) 2592 concatenate_3[a][8]
activation 14 (Activation) (Hone, &2, 62, 128) @ batch_normalization vi_ze[e][e] activation 18 (Activation) (Nong, 258, 235, 32) @ hatch_normalization_vi_26[@][e]
batch_normalization_vl_21 (Batc (Mone, 64, 64, 128) 512 conv2d_22[e][e] - -
L T batch_normalization vl_27 (Batc (Nome, 256, 256, 32) 128 convad_zs[e][e]
conv2d_21 (ConvaD) (Mone, &4, 64, 128) 147584 activation_14[@][e]
convad_27 {ConvaD) {None, 256, 256, 32) 9248 activation_18[e][8]
add_g& (Add) (Mone, &4, 62, 128) @ batch_normalization wvi_21[e][e]
comvzd_z1[a](e] add_s (Add) (None, 256, 256, 32) @ batch_normalization vi_27(8][e]
up_sampling2d_2 (UpSampling2D) {Mone, 128, 128, 128 @ add_s[e][e] conv2d_z7[e][e]
concatenate_2 (Concatenate) (Mone, 128, 128, 16@ @ up_sampling2d_2[8][e] conv2d_29 {ConvaD) {None, 256, 256, 1) 33 add_s[@][e]
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V. CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

Automated liver tumor segmentation using deep learning has emerged as a powerful tool for medical picture
analysis. In this last section, we summarize the significant results and contributions of the research on liver tumor
segmentation using deep learning, emphasizing their clinical importance and potential effect on clinical practice.
We also discuss challenges faced throughout the research and provide recommendations for future development
of this technology.

The research demonstrates that automated segmentation algorithms based on deep learning can accurately identify
liver tumors in medical images. In order to effectively segregate tumors and capture their complicated architecture,
convolutional neural networks (CNNs) and encoder-decoder designs, such U-Net, have shown to be effective.
Automatic segmentation based on deep learning is more efficient, reliable, and scalable than manual segmentation.
As a result, large-scale clinical datasets are now possible without the need for laborious and time-consuming
human annotation.

The liver and liver tumors have been the focus of numerous deep learning models developed for early detection.
Automatic segmentation algorithms are necessary for developing a reliable radiation therapy treatment plan. In
this study, we introduced the Liver Tumor Segmentation (LiTS) standard. This study details the use of a deep
learning model to the problem of segmenting CT images of tumors and livers. To train and test the suggested
model, we turned to the standard 3D-IRCADBI1 dataset. This work provides a comprehensive literature
assessment of 19 deep learning publications, all of which discuss automated liver tumor segmentation. This paper
provides a summary of Neural networks (both Convolutional and U-Nets) and their applications to liver
segmentation. The writers of the literature review reflected on and addressed a wide range of issues and ideas.
The techniques used throughout the studies all stem from the realm of deep learning, yielding reliable outcomes.

In conclusion, automated liver tumor segmentation using deep learning has the potential to greatly improve both
liver tumor diagnosis and treatment. By more precisely defining tumors, this technology may help doctors provide
prompt, individualized treatments that ultimately lead to better patient outcomes. If the medical and Al
communities can work together to learn more about deep learning-based liver tumour segmentation, it may
become an indispensable tool in the fight against liver cancer.

5.2 FUTURE WORK

Researchers entering or already active in the same area might investigate the methods for the additional alterations
that will improve outcomes. To make the model more stable and applicable, it may be necessary to use a larger
training dataset. The precision of deep learning models may improve with time, allowing for more precise and
consistent tumor segmentation in the liver. This might lead to more accurate diagnosis and improved therapy
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tracking. Automatic segmentation has the potential to reduce health care disparities throughout the globe by
providing accurate tumor analysis in regions with less medical expertise.

Automatic liver tumor segmentation based on deep learning has the potential to greatly improve diagnostics and
therapy. The science of Al will advance and be able to influence how it impacts patient care if practitioners,
researchers, and medical professionals work together more closely.
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