IOT Based Health-Care Monitoring System

Shaik Abdul Raheem¹

¹BTech Student, Department of Computer Science, Sharnbasva University, Kalaburagi, Karnataka. raheemshaikabdul895@gmail.com

ABSTRACT

Scientific research in recent years has focused heavily on building wearable biosensor technologies including their advanced biosensors for an efficient healthcare monitoring system. Furthermore, this cutting-edge healthcare system prioritises excellent quality and extremely low cost, and it is expected to be dependable and secure. The present practise of ignoring potential problems in favour of addressing the existing ones has made access to quality medical care difficult to get. This study provides a concise summary of the advantages of telemetric & Holter ECG Warehouse (THEW) technology to scientific community, which is interested in the prospect of progress in the area of ECG & cardiac safety. In addition, this section is dedicated to the Virtus Middleware implemented in the medical applications under discussion. The key benefits are the sensors' low power consumption and the early warning system, which is especially useful in hospital wards for notifying patients of critical health defects. This literature study provides context for the notion of a wireless sensor patient-monitoring system, which allows for instantaneous input to both patient & caregiver. As a result, patients and caregivers may benefit from receiving warnings via Short Message Service and from having access to their data stored in cloud for analysis.

Key words: Cloud storage, electrocardiograph, IoT, pulse sensor.

I. INTRODUCTION

Since the goal of developing wearable sensors for healthcare monitoring has been met, there has been a surge of interest in using these cutting-edge sensors in other fields, such as manufacturing. In this case, smart connected healthcare system is one of the main areas of concentration within the IoT. Data transfer, cloud storage, security, message warnings, and instant response from several writers are discussed in this survey. The results of a survey on cardiac monitoring and the development of more accurate electrocardiograms (ECGs) are presented here. Here, Virtus functions as a wireless sensor application layer middleware. At addition, an EWS will be implemented to provide efficient patient monitoring in healthcare facility. Information mining may be seen as investigation of patient data.

II. LITERATURE SURVEY

- 1. Pantelopoulos and Bourbakis^[1] provided details on state of art in wireless biosensors system development for efficient healthcare monitoring. The system is comprised of ultra-low power, wireless sensors that make use of ZigBee networking. This technology also allows for wireless communication in the form of wireless body area networks (WBANs), adapting to each user's unique physiological state with the help of an artificial neural network. For purpose of patient monitoring, these wearable devices must be dependable, multipurpose, and simple to use; the 2360–2400 MHz band is used for medical BAN services to prevent interferences from wireless technology. The technology has to be used in the here and now.
- 2. Milenkovi *et al.*^[2] discussed the need of constant health care monitoring, including alerting medical professionals to any changes and giving input to the system. In this system, a wireless wearable body area networking chip incorporates physical sensors, integrated microcontrollers, & radio interfaces. It's also incredibly inexpensive and easy to transport.
- It also instantly updates user's medical information and offers feedback on the user's current health state. Continuous health monitoring is supported by system, which also helps patient. Where QoS for wireless communications, sensor dependability, security, interface standards, and overall interoperability all require work.
- 3. Kumar *et al.*^[3] described the extensive deployment of wireless sensor networks for real-time monitoring of patients, cloud-based data storage, and uninterrupted transmission of patient data. For the purpose of keeping tabs on the patient's data by comparing it to what's already in the system through some slick apps. Both the medical staff and the person in charge of the patient are notified through Short Message Service when an emergency arises. There is a need for high-quality, cost-effective health-care services that incorporate analysis of

data with cloud computing in order to ensure safety and privacy of patient data & mobile computing.

- 4. Nithin *et al.*^[4] explained how sensors may capture not just today's but also yesterday's data. The information gathered by the sensors is rich in longitudinal detail, which is useful to the doctor in taking preventative measures. Put simply, WBAN is a network of wearable sensors used to monitor a wide range of biometric variables. The data collected by the sensor is sent over Bluetooth to a gateway server. The data collected by clinics is sent through the gateway server to a distant server. Continuous, around-the-clock tracking in real time. Integration with a database management system & cloud storage are logical extensions. Patients' records are easily accessible to doctors.
- 5. Chou *et al.*^[5] said that data gathering by wireless sensor nodes needs access to adequate energy. Although the data obtained by current adaptive compressive sensing techniques is of high quality, these methods cannot be integrated into the WSN. So, to realise energy efficacy in completely gathering data in WSN, techniques such as a data gathering framework as well as responsive prediction vectors are employed to iteratively quantify forecasts which also maximise the proportion of data which stands to gain to energy needed to obtain information.
- 6. Couderc^[6] discusses the state of the art in ECG monitoring and the tools at scientists' disposal, including Telemetric and Holter ECG Warehouse (THEW), an effort which has helped the field of ECG and cardiac safety improve thanks to its focus on sharing data. In addition, progress has been made quickly on this front, as well as the number of people and departments inside the company that make use of data warehouse principles keeps expanding. Therefore, advances in ECG technology are necessary to ensure cardiac safety.
- 7. Bazzani *et al.*^[7] provided details on the Internet of Things technology that allows for untethered, round-the-clock monitoring of patient behaviour from afar. In addition, an IoT paradigm may be used to manage a patient who activates from home. In this case, the Internet of Things (IoT) idea is related to the middleware architectural layer. IoT concepts into e-health are discussed in detail by VIRTUS event-driven middleware.

Table 1:	Com	parative	analysis	01	technolo	gy in	healthcare	monitoring	system

Author	Years	Technology	Existing problem	Proposed system
Pantelopoulos and Bourbakis	January 2010	ZigBee wireless Ultra-low power technology	Biosensors system for effective health-care monitoring Wireless communication for WBANs	Reliable Multifunctional Ease to use
Milenkovi et al.	2006	Embedded microcontrollers Radio interfaces	Providing feedback Alert medical	1. QOS
Kumar et al	January 2014	1. Cloud environment	Comparing with lookup table SMS	Security Privacy
Nithin et al	October 2014	1. Bluetooth	Record not only the current day's data but also the previous day's	Database management Cloud storage
Chou et al	October 2009	Sufficient energy required for the data collection by a wireless sensor network	Adaptive compressive sensing algorithm	1. Heuristics algorithm
Couderc	2010	1. ECG-related technology	1. THEW	Improvement needed in ECG technology for cardiac safety
Bazzani et al	June 2012	Bluetooth ZigBee wireless	IoT paradigm Virtus	Focusing more on advantages of Virtus
Kocabas et al	October 2013	Cloud storage Radio communication	Two super layers named the front end and the back end Front end acts as an interface between the patient and the system. Also, back end acts as interface between the system and the doctor	Privacy Security Analytics
Page et al	2015	1. ZigBee 2. Cloud	Continuous monitoring Feedback Automatic alarm	Database Automatic updates from the live data itself
Mao et al	April 2014	1. Data mining	EWS Novel data mining framework	1. Bucketing technique

EWS: Early warning system, SMS: Short Message Service, QoS: Quality of service, WBAN: Wireless body area network, THEW: Telemetric and Holter ECG Warehouse, IoT: Internet of things

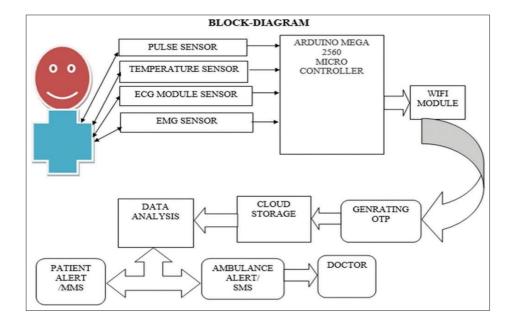


Figure 1: Shows block diagram of patient healthcare monitoring system

III. PROPOSED SYSTEM

In this example, as shown in Fig 1, patient's body has been matched up with the appropriate biosensors. All of the aforementioned biosensors work together to collect data, with their respective programmes included into system for backup and to ensure the user is aware that the sensors are in fact gathering data. In addition, the Raspberry pi microcontroller connects all of the sensors through an integrated Wi-Fi module, allowing for data to be securely sent to a near host utilizing Tomcat version 7 and the Advanced Encryption Standard (AES). As a result, data analytics, which is dependent on data stored in the cloud (Sqlyog) and can be accessed for regular use with a graphical representation, will enter the picture. Here, in the event of an emergency, a message alert is sent to both the doctor and the patient's guardian. Both the patient and the doctor share the same user password and ID for verification purpose. This allows the doctor to check the patient's information and provide accurate treatment. In this article, we'll talk about how the public and private sectors are using the Internet of Things:

Apple: The introduction of apps and gadgets like the Apple Watch, which displays information about user's accelerometer and heart rate, has made it easier to maintain one's health while going about one's everyday activities. Performance data from body is also available via health applications.

Navy health: We have created hydraulic suction-based nursing pump that may be used into place of standard electric vacuum pump. The new pump is less expensive than older one.

Sunshine: Mobile phone tracking and crowdsourcing are used to get user data. Compared to other options, Sunshine provides its customers with the highest chance of making a positive life choice. Stressors may be detected by tracking client attitude each day.

Orbita: It works with other popular smart home systems like the Amazon Echo and the Google Home. They contribute to the betterment of the lives of those receiving and providing chronic care.

The health-awareness-providing solutions offered by Orbita will include the integration of wearables, home care monitoring, and smart home technology.

Some IT companies have a vision for future of healthcare on the internet of things.

IV. CONCLUSION

This article provides a summary of research on the use of biosensors in healthcare monitoring. The development of better cardiac & ECG monitoring is centred on THEW technology. Security concerns, message attentiveness, & modeling for performance estimates should be included to this survey.

REFERENCES

- 1. Pantelopoulos A, Bourbakis N. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Sys Man Cybern Part C Appl Rev 2010;40:1-2.
- 2. Milenkovi A, Otto C, Jovanov E. Wireless sensor networks for personal health monitoring: Issues and an implementation. Sci Direct Computer Commun 2006;29:2521-33.
- 3. Kumar P, Prasad SV, PatakA. Designand Implementation of M-Health. System by Using Cloud Computing. Int JInnovat Res Sci Eng Technol 2016;5:2319-8753.
- 4. Hassanalieragh M, Page A, Soyata T, Sharma G, Aktas M, Mateos G, *et al.*, "Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges," 2015 IEEE International Conference on Services Computing, New York, NY, 2015, p. 285-292
- 5. Chou CT, Rana R, Hu W. Energy Efficient Information Collection in Wireless Sensor Networks using Adaptive Compressive Sensing. In: IEEE 34th Conference on Local Computer Networks, LCN; 2009. p. 443-50.
- 6. Couderc J. The Telemetric and Holter ECG Warehouse Initiative (THEW): A Data Repository for the Design, Implementation and Validation of Ecg-Related Technologies. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. IEEE; 2010. p. 6252-5.
- 7. Bazzani M, Conzon D, Scalera A, Spirito M, Trainito C. Enabling the IoT Paradigm in E-health Solutions through the VIRTUS Middleware. In: IEEE 11th International Conference on Trust, Security and Privacy in Computing and Com. (Trust Com); 2012.p. 1954-9.
- 8. Kocabas O, Soyata T, Couderc JP, Aktas M, Xia J, Huang M. Assessment of Cloud-Based Health Monitoring using Homomorphic Encryption. In: Proceedings of the 31st IEEE International Conference on Computer Design (ICCD), Ashville, VA, USA; 2013. p. 443-6.
- 9. Page A, Soyata T, Couderc JP, Aktas M, Kantarci B, Andreescu S. "Visualization of Health Monitoring Data Acquired from Distributed Sensors for Multiple Patients" 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, 2015, p. 1-7.
- 10. Mao Y, Chen Y, Hackmann G, Chen M, Lu C, Kollef M, Bailey TC, "Medical Data Mining for Early Deterioration Warning in General Hospital Wards," 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, 2011, p. 1042-49.